§63.770

- (1) Each pressure relief device in gas/vapor service shall be monitored quarterly and within 5 days after each pressure release to detect leaks, except under the following conditions.
- (i) The owner or operator has obtained permission from the Administrator to use an alternative means of emission limitation that achieves a reduction in emissions of VHAP at least equivalent to that achieved by the control required in this subpart.
- (ii) The pressure relief device is located in a nonfractionating facility that is monitored only by non-facility personnel, it may be monitored after a pressure release the next time the monitoring personnel are on site, instead of within 5 days. Such a pressure relief device shall not be allowed to operate for more than 30 days after a pressure release without monitoring.
- (2) For pressure relief devices, if an instrument reading of 10,000 parts per million or greater is measured, a leak is detected.
- (3) For pressure relief devices, when a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after it is detected, unless a delay in repair of equipment is granted under 40 CFR 61.242-10.
- (4) Sampling connection systems are exempt from the requirements of 40 CFR 61.242-5.
- (5) Pumps in VHAP service, valves in gas/vapor and light liquid service, and pressure relief devices in gas/vapor service that are located at a nonfractionating plant that does not have the design capacity to process 283,000 standard cubic meters per day or more of field gas are exempt from the routine monitoring requirements of 40 CFR 61.242-2(a)(1) and 61.242-7(a), and paragraphs (c)(1) through (3) of this section.
- (6) Pumps in VHAP service, valves in gas/vapor and light liquid service, and pressure relief devices in gas/vapor service located within a natural gas processing plant that is located on the Alaskan North Slope are exempt from the routine monitoring requirements of 40 CFR 61.242–2(a)(1) and 61.242–7(a), and paragraphs (c)(1) through (3) of this section.
- (7) Reciprocating compressors in wet gas service are exempt from the com-

pressor control requirements of $40~\mathrm{CFR}$ 61.242-3.

(8) Flares used to comply with this subpart shall comply with the requirements of §63.11(b).

[64 FR 32628, June 17, 1999, as amended at 66 FR 34551, June 29, 2001]

§63.770 [Reserved]

§ 63.771 Control equipment requirements.

- (a) This section applies to each cover, closed-vent system, and control device installed and operated by the owner or operator to control air emissions as required by the provisions of this subpart. Compliance with paragraphs (b), (c), and (d) of this section will be determined by review of the records required by §63.774 and the reports required by §63.775, by review of performance test results, and by inspections.
- (b) Cover requirements. (1) The cover and all openings on the cover (e.g., access hatches, sampling ports, and gauge wells) shall be designed to form a continuous barrier over the entire surface area of the liquid in the storage vessel.
- (2) Each cover opening shall be secured in a closed, sealed position (e.g., covered by a gasketed lid or cap) whenever material is in the unit on which the cover is installed except during those times when it is necessary to use an opening as follows:
- (i) To add material to, or remove material from the unit (this includes openings necessary to equalize or balance the internal pressure of the unit following changes in the level of the material in the unit);
- (ii) To inspect or sample the material in the unit:
- (iii) To inspect, maintain, repair, or replace equipment located inside the unit; or
- (iv) To vent liquids, gases, or fumes from the unit through a closed-vent system to a control device designed and operated in accordance with the requirements of paragraphs (c) and (d) of this section.
- (c) Closed-vent system requirements. (1) The closed-vent system shall route all gases, vapors, and fumes emitted from the material in a HAP emissions unit

to a control device that meets the requirements specified in paragraph (d) of this section.

- (2) The closed-vent system shall be designed and operated with no detectable emissions.
- (3) If the closed-vent system contains one or more bypass devices that could be used to divert all or a portion of the gases, vapors, or fumes from entering the control device, the owner or operator shall meet the requirements specified in paragraphs (c)(3)(i) and (c)(3)(ii) of this section.
- (i) For each bypass device, except as provided for in paragraph (c)(3)(ii) of this section, the owner or operator shall either:
- (A) At the inlet to the bypass device that could divert the stream away from the control device to the atmosphere, properly install, calibrate, maintain, and operate a flow indicator that is capable of taking periodic readings and sounding an alarm when the bypass device is open such that the stream is being, or could be, diverted away from the control device to the atmosphere; or
- (B) Secure the bypass device valve installed at the inlet to the bypass device in the non-diverting position using a car-seal or a lock-and-key type configuration.
- (ii) Low leg drains, high point bleeds, analyzer vents, open-ended valves or lines, and safety devices are not subject to the requirements of paragraph (c)(3)(i) of this section.
- (d) Control device requirements. (1) The control device used to reduce HAP emissions in accordance with the standards of this subpart shall be one of the control devices specified in paragraphs (d)(1)(i) through (iii) of this section.
- (i) An enclosed combustion device (e.g., thermal vapor incinerator, catalytic vapor incinerator, boiler, or process heater) that is designed and operated in accordance with one of the following performance requirements:
- (A) Reduces the mass content of either TOC or total HAP in the gases vented to the device by 95.0 percent by weight or greater as determined in accordance with the requirements of §63.772(e); or

- (B) Reduces the concentration of either TOC or total HAP in the exhaust gases at the outlet to the device to a level equal to or less than 20 parts per million by volume on a dry basis corrected to 3 percent oxygen as determined in accordance with the requirements of §63.772(e); or
- (C) Operates at a minimum residence time of 0.5 seconds at a minimum temperature of 760 $^{\circ}\text{C}.$
- (D) If a boiler or process heater is used as the control device, then the vent stream shall be introduced into the flame zone of the boiler or process heater
- (ii) A vapor recovery device (e.g., carbon adsorption system or condenser) or other control device that is designed and operated to reduce the mass content of either TOC or total HAP in the gases vented to the device by 95.0 percent by weight or greater as determined in accordance with the requirements of §63.772(e).
- (iii) A flare that is designed and operated in accordance with the requirements of §63.11(b).
 - (2) [Reserved]
- (3) The owner or operator shall demonstrate that a control device achieves the performance requirements of paragraph (d)(1) of this section as specified in $\S63.772(e)$.
- (4) The owner or operator shall operate each control device in accordance with the requirements specified in paragraphs (d)(4)(i) and (ii) of this section.
- (i) Each control device used to comply with this subpart shall be operating at all times when gases, vapors, and fumes are vented from the HAP emissions unit or units through the closed-vent system to the control device, as required under §§63.765, 63.766, and 63.769, except when maintenance or repair on a unit cannot be completed without a shutdown of the control device. An owner or operator may vent more than one unit to a control device used to comply with this subpart.
- (ii) For each control device monitored in accordance with the requirements of §63.773(d), the owner or operator shall demonstrate compliance according to the requirements of §63.772(f) or (g), as applicable.

§ 63.771

- (5) For each carbon adsorption system used as a control device to meet the requirements of paragraph (d)(1) of this section, the owner or operator shall manage the carbon as follows:
- (i) Following the initial startup of the control device, all carbon in the control device shall be replaced with fresh carbon on a regular, predetermined time interval that is no longer than the carbon service life established for the carbon adsorption system.
- (ii) The spent carbon removed from the carbon adsorption system shall be either regenerated, reactivated, or burned in one of the units specified in paragraphs (d)(5)(ii)(A) through (d)(5)(ii)(G) of this section.
- (A) Regenerated or reactivated in a thermal treatment unit for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 264, subpart X.
- (B) Regenerated or reactivated in a thermal treatment unit equipped with and operating air emission controls in accordance with this section.
- (C) Regenerated or reactivated in a thermal treatment unit equipped with and operating organic air emission controls in accordance with a national emissions standard for HAP under another subpart in 40 CFR part 61 or this part.
- (D) Burned in a hazardous waste incinerator for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 264, subpart O.
- (E) Burned in a hazardous waste incinerator which the owner or operator has designed and operates in accordance with the requirements of 40 CFR part 265, subpart O.
- (F) Burned in a boiler or industrial furnace for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 266, subpart H.
- (G) Burned in a boiler or industrial furnace which the owner or operator has designed and operates in accordance with the interim status requirements of 40 CFR part 266, subpart H.
- (e) *Process modification requirements.* Each owner or operator that chooses to

- comply with 63.765(c)(2) shall meet the requirements specified in paragraphs (e)(1) through (e)(3) of this section.
- (1) The owner or operator shall determine glycol dehydration unit baseline operations (as defined in §63.761). Records of glycol dehydration unit baseline operations shall be retained as required under §63.774(b)(10).
- (2) The owner or operator shall document, to the Administrator's satisfaction, the conditions for which glycol dehydration unit baseline operations shall be modified to achieve the 95.0 percent overall HAP emission reduction, either through process modifications or through a combination of process modifications and one or more control devices. If a combination of process modifications and one or more control devices are used, the owner or operator shall also establish the percent HAP reduction to be achieved by the control device to achieve an overall HAP emission reduction of 95.0 percent for the glycol dehydration unit process vent. Only modifications in glycol dehydration unit operations directly related to process changes, including but not limited to changes in glycol circulation rate or glycol-HAP absorbency, shall be allowed. Changes in the inlet gas characteristics or natural gas throughput rate shall not be considered in determining the overall HAP emission reduction due to process modifications.
- (3) The owner or operator that achieves a 95.0 percent HAP emission reduction using process modifications alone shall comply with paragraph (e)(3)(i) of this section. The owner or operator that achieves a 95.0 percent HAP emission reduction using a combination of process modifications and one or more control devices shall comply with paragraphs (e)(3)(i) and (e)(3)(ii) of this section.
- (i) The owner or operator shall maintain records, as required in §63.774(b)(11), that the facility continues to operate in accordance with the conditions specified under paragraph (e)(2) of this section.
- (ii) The owner or operator shall comply with the control device requirements specified in paragraph (d) of this section, except that the emission reduction achieved shall be the emission

reduction specified for the control device(s) in paragraph (e)(2) of this section.

[64 FR 32628, June 17, 1999, as amended at 66 FR 34552, June 29, 2001; 68 FR 37353, June 23, 2003]

§ 63.772 Test methods, compliance procedures, and compliance demonstrations.

- (a) Determination of material VHAP or HAP concentration to determine the applicability of the equipment leak standards under this subpart (§ 63.769). Each piece of ancillary equipment and compressors are presumed to be in VHAP service or in wet gas service unless an owner or operator demonstrates that the piece of equipment is not in VHAP service or in wet gas service.
- (1) For a piece of ancillary equipment and compressors to be considered not in VHAP service, it must be determined that the percent VHAP content can be reasonably expected never to exceed 10.0 percent by weight. For the purposes of determining the percent VHAP content of the process fluid that is contained in or contacts a piece of ancillary equipment or compressor, Method 18 of 40 CFR part 60, appendix A. shall be used.
- (2) For a piece of ancillary equipment and compressors to be considered in wet gas service, it must be determined that it contains or contacts the field gas before the extraction of natural gas liquids.
- (b) Determination of glycol dehydration unit flowrate or benzene emissions. The procedures of this paragraph shall be used by an owner or operator to determine glycol dehydration unit natural gas flowrate or benzene emissions to meet the criteria for an exemption from control requirements under §63.764(e)(1).
- (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be made using the procedures of either paragraph (b)(1)(i) or (b)(1)(ii) of this section.
- (i) The owner or operator shall install and operate a monitoring instrument that directly measures natural gas flowrate to the glycol dehydration unit with an accuracy of plus or minus 2 percent or better. The owner or operator shall convert annual natural gas

flowrate to a daily average by dividing the annual flowrate by the number of days per year the glycol dehydration unit processed natural gas.

- (ii) The owner or operator shall document, to the Administrator's satisfaction, that the actual annual average natural gas flowrate to the glycol dehydration unit is less than 85 thousand standard cubic meters per day.
- (2) The determination of actual average benzene emissions from a glycol dehydration unit shall be made using the procedures of either paragraph (b)(2)(i) or (b)(2)(ii) of this section. Emissions shall be determined either uncontrolled, or with federally enforceable controls in place.
- (i) The owner or operator shall determine actual average benzene emissions using the model GRI-GLYCalc™, Version 3.0 or higher, and the procedures presented in the associated GRI-GLYCalc™ Technical Reference Manual. Inputs to the model shall be representative of actual operating conditions of the glycol dehydration unit and may be determined using the procedures documented in the Gas Research Institute (GRI) report entitled "Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions" (GRI-95/0368.1); or
- (ii) The owner or operator shall determine an average mass rate of benzene emissions in kilograms per hour through direct measurement by performing three runs of Method 18, 40 CFR Part 60, appendix A (or an equivalent method), and averaging the results of the three runs. Annual emissions in kilograms per year shall be determined by multiplying the mass rate by the number of hours the unit is operated per year. This result shall be converted to megagrams per year.
- (c) No detectable emissions test procedure. (1) The no detectable emissions test procedure shall be conducted in accordance with Method 21, 40 CFR part 60, appendix A.